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STRESS–STRAIN STATE OF A COMPOSITE ANISOTROPIC PLATE

WITH CURVILINEAR CRACKS AND THIN RIGID INCLUSIONS

UDC 539.3V. N. Maksimenko and G. V. Nedogibchenko

A complex-potential solution of a mixed problem of the linear theory of elasticity is given for an
infinite plate composed of two anisotropic half-planes. The plate contains cuts and thin undeformable
inclusions shaped like arbitrary open smooth curves that do not intersect each other and the interface
between the half-planes.

Formulations of the Problem. We consider a piecewise homogeneous plate occupying the plane z = x+iy.
The plate is composed of two anisotropic half-planes bonded continuously along the line x = 0. At infinity, stresses
are specified for which the continuity conditions

σ(1)
x = σ(2)

x , τ (1)
xy = τ (2)

xy , u′(1)
y = u′(2)

y , v′(1)
y = v′(2)

y (1)

are satisfied on the interface of the half-planes if the plate have no defects and stiffeners.
It is assumed that through cuts (cracks) and thin undeformable inclusions are located in the half-plane

x > 0 along smooth curves Lj = (aj , bj) for j = 1, . . . , k1 and for j = k1 + 1, . . . , k, respectively: L =
k1⋃
j=1

Lj and

C =
k⋃

j=k1+1

Lj . The curves do not intersect each other and the interface between the half-planes. For each curve,

we choose the normals n(t) (t ∈ Lj) directed to the right when moving from aj to bj . It is assumed that the edges
of the cuts do not contact and they are subjected to the self-equilibrated, uniformly distributed loads

X±n (t) + iY ±n (t) = ±P (t), t ∈ L. (2)

The curvilinear inclusions can displace as a single rigid body:

u±(t) + iv±(t) = g1(t) + ig2(t) = G(t), t ∈ C; G(t) = cj + iεjt, t ∈ Lj . (3)

Here cj is a complex constant and εj is the unknown or specified angle of rotation of the rigid inclusion Lj . The
superscripts plus and minus correspond to the left and right edges of the cut or inclusion, respectively.

It is required to determine the stress–strain state of the plate. To solve the problem, we use the methods
[1–5] for calculating the stresses and strains in anisotropic plates with defects and stiffeners of arbitrary shapes.
Lin’kov [6] considered a similar problem and derived a system of integral equations for a plate composed of two
isotropic half-planes.

Expressions for Potentials. Let µ(r)
1 and µ

(r)
2 be the unequal roots of the characteristic equation [7]

a
(r)
11 µ

4 − 2a(r)
16 µ

3 + (2a(r)
12 + a

(r)
66 )µ2 − 2a(r)

26 µ + a
(r)
22 = 0, where a(r)

ij are the coefficients of strains in Hooke’s law

(r = 1 corresponds to the half-plane x > 0 and r = 2 to the half-plane x < 0). We assume that Imµ
(r)
1 > 0 and

Imµ
(r)
2 > 0.

By analogy with [3, 4], we seek the Lekhnitskii potentials [7] in the form

Φ(r)
ν (z(r)

ν ) = Φ(r)
ν0 + Φ(r)

ν1 (z(r)
ν ) + Φ(r)

ν2 (z(r)
ν ), ν = 1, 2, r = 1, 2. (4)
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Here z(r)
ν = x+ µ

(r)
ν y, Φ(r)

ν0 are determined by the forces at infinity for the plane without defects and stiffeners,

Φ(1)
ν1 (z(1)

ν ) =
1

2πi

∫
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ν =

µ
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µ
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ν =

µ
(1)
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µ
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,

dτ (1)
ν = (µ(1)

ν cosϕ(τ)− sinϕ(τ)) ds = M (1)
ν (τ) ds,

ϕ(τ) is the angle between the normal n(τ) and the x axis, and ds is the differential of the arc length. The vectors
{l̄(1)

1 , l̄
(1)
2 , l

(2)
1 , l

(2)
2 } and {n̄(1)

1 , n̄
(1)
2 , n

(2)
1 , n

(2)
2 } are determined by conditions (1) and satisfy the system AX = B(ν)

(for ν = 1 and ν = 2, respectively), where
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ν },
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26 , ν = 1, 2.

Thus, the continuity conditions (1) at the interface between the half-planes are satisfied automatically for arbitrary
boundary conditions (2) and (3) on the cuts and rigid inclusions.

System of Integral Equations of the Problem. Using representations (4) and the Sokhotskii–Plemelj
formulas, from the boundary conditions (2) and (3) we obtain the system of integral equations for determining the
desired densities ω1(t), ω2(t), µ1(t), and µ2(t) and the relations for ω1(t) and ω2(t) for the cuts µ1(t) and µ2(t) and
rigid inclusions: ∫

L

ω1(τ)

τ
(1)
1 − t(1)

1

dτ
(1)
1 +

∫
L

ω1(τ)K11(t, τ) ds+
∫
L

ω1(τ)K12(t, τ) ds

+
∫
C

µ1(τ)K13(t, τ) ds+
∫
C

µ1(τ)K14(t, τ) ds = f1(t), t ∈ L,

∫
C

µ1(τ)

τ
(1)
1 − t(1)

1

dτ
(1)
1 +

∫
C

µ1(τ)K21(t, τ) ds+
∫
C

µ1(τ)K22(t, τ) ds (6)

+
∫
L

ω1(τ)K23(t, τ) ds+
∫
L

ω1(τ)K24(t, τ) ds = f2(t), t ∈ C,

a(t)ω1(t) + b(t)ω1(t) + ω2(t) = 0, t ∈ L,

A(t)µ1(t) +B(t)µ1(t) + µ2(t) = 0, t ∈ C.
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Here

f1(t) =
πiF (t)
b(t)

− πi
[a(t)
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(1)
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2 )M (1)

2 (t)
; W±(t) = W (t) =

p̄
(1)
2 dg2/ds− q̄(1)
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The system is supplemented by the equations∫
Lj

ω1(τ) dτ (1)
1 = 0, j = 1, . . . , k1,

∫
Lj

µ1(τ) dτ (1)
1 = 0, j = k1 + 1, . . . , k, (7)

which require that the displacements be unique after passing the contour of each cut and the principal vector of
forces acting on each rigid inclusion be equal to zero.

The angles of rotation of rigid inclusions under plate loading are determined by the condition of vanishing
of the principal moment of forces acting on each inclusion. This condition has the form

2Re

{∫
Lj

(
τ

(1)
1 − τ (1)

2 A0 − τ̄ (1)
2 B̄0

)
µ1(τ) dτ (1)

1

}
= 0, j = k1 + 1, . . . , k. (8)

Thus, we have obtained system (6)–(8) for determining the densities ω1(t), ω2(t), µ1(t), and µ2(t).
Using representations (5) and system (6)–(8) and calculating the limiting values of the anisotropy parameters

as done in [1], one can obtain potentials and a system of equations for the cases where one or two half-planes are
isotropic.

Numerical Solution. Introducing the parametrization of the curves Lj = {t = τ j(ξ), ξ ∈ [−1, 1]}
and the notation ω1(τ j(ξ)) = χj(ξ) = χ0

j (ξ)/
√

1− ξ2 (j = 1, . . . , k1) and µ1(τ j(ξ)) = χj(ξ) = χ0
j (ξ)/

√
1− ξ2

(j = k1 + 1, . . . , k), we reduce system (6)–(8) to the canonical system of integral equations

k∑
p=1

1∫
−1

{
Kjp

1 (ξ, η)χp(η) +Kjp
2 (ξ, η)χp(η)

}
dη = fj(ξ), j = 1, . . . , k,

1∫
−1

χj(η)(τ j1 (η))′ dη = 0, j = 1, . . . , k, Re

{ 1∫
−1

Kj(η)χj(η) dη

}
= 0, j = k1 + 1, . . . , k,

where the functions Kjj
1 (ξ, η) have the Cauchy-type singularities.

The system is solved with the use of quadrature formulas according to the scheme described in [3]. Once the
solution is obtained, the potentials and stresses can be determined at each point of the plate with a specified accuracy
[7] and the stress-intensity factors K1 and K2 at the tips of the cracks and rigid inclusions can be calculated [3]:

(σ(r)
x , τ (r)

xy , σ
(r)
y ) = 2Re

{
2∑

ν=1

((µ(r)
ν )2,−µ(r)

ν , 1)Φ(r)
ν (z(r)

ν )

}
,

K1 = lim
r→0
θ=0

σn
√

2πr, K2 = lim
r→0
θ=0

τn
√

2πr.
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Fig. 1 Fig. 2

Fig. 3

Fig. 4

Here r and θ are polar coordinates of the point (the pole is located at the tip of the curve, and the polar axis is
tangent to it), σn = 0.5(σx + σy) + 0.5(σx− σy) cos 2ϕ+ τxy sin 2ϕ, and τn = −0.5(σx− σy) sin 2ϕ+ τxy cos 2ϕ (ϕ is
the angle between the normal to the curve at its tip and the x axis).

Calculation Results. Below, we consider plates composed of orthotropic materials with different
anisotropic properties, plates composed of orthotropic and isotropic materials, and a semi-infinite plate with a free
edge. In calculations, an isotropic material is modeled by introducing a “weak anisotropy” [G = 0.4999E/(1+ν)]. In
this case, the half-plane x > 0 always consists of an orthotropic material with the characteristics E1 = 53.84 GPa,
E1/E2 = 3, G = 8.63 GPa, and ν = 0.25, the principal axis of anisotropy corresponding to the modulus E(1)

1

coincides with the Ox axis. The plate is uniformly loaded along the interface between the half-planes by the tensile
stresses σ1 and σ2 = kσ1 applied at infinity (Figs. 1 and 2).
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Fig. 5

Fig. 6

Figures 3 and 4 show the stress-intensity factors at the tip a of the cut (Fig. 3) or a thin rigid inclusion
(Fig. 4) shaped as a semicircumference versus the angle of rotation α (see Fig. 1). The ratio of the semicircumference
radius to the distance to the interface is R/d = 0.7. The half-plane x < 0 is made of an orthotropic material with
the characteristics E1 = 276.1 GPa, E1/E2 = 10, G = 10.35 GPa, and ν = 0.25 (curves 1) or it is absent (curves 2).
In the first case, the principal axes of anisotropy that correspond to the moduli E(1)

1 and E
(2)
1 are directed along

the Ox axis and k = E
(2)
2 /E

(1)
2 . The problem of a cut in a half-plane is solved in [3]. The dashed curves in Fig. 3

refer to a homogeneous plate (plane) from a material of the right half-plane loaded by the stress σ1 at infinity. For
the rigid inclusion (Fig. 4), curves 1 and 2 are very close, and the curves corresponding to the homogeneous plate
loaded by tensile stresses σ1 coincide with curves 1 in Fig. 4.

Figures 5 and 6 show the stress-intensity factors at the tip a of the cut (Fig. 5) or rigid inclusion (Fig. 6)
shaped as a semicircumference (solid curves) versus the ratio d/R [d is the distance from the tip to the interface
between the half-planes (see Fig. 2) and R is the semicircumference radius]. The half-plane x < 0 is made of
an orthotropic material with the characteristics E1 = 276.1 GPa, E1/E2 = 10, G = 10.35 GPa, and ν = 0.25
(curves 1 and 2 correspond to the cases where the axis of the modulus E(2)

1 is directed along the Ox and Oy axes,
respectively), an isotropic material with the characteristics E1 = 276.10 GPa, E1/E2 = 1, and ν = 0.25 (curves 3),
or it is absent (curve 4). Curves 1–3 correspond to k = E

(2)
2 /E

(1)
2 , E(2)

1 /E
(1)
2 , and E(2)/E

(1)
2 , respectively. For the

case of the cut, the absolute values of the factors K2(a) are smaller than 0.15 for d/R = 0.02–2.0; the corresponding
curves are not shown in Fig. 5. In Fig. 6, curves corresponding to the factor K1(a) are not shown (the absolute
values of these factors are smaller than 0.04).
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TABLE 1

k d/a
K1(A)/(σ

√
πa) K1(B)/(σ

√
πa)

Present results Data of [8] Present results Data of [8]

1.04 1.0557 1.056 1.2497 1.250

0.5
1.2 1.0396 1.040 1.1116 1.112
2.0 1.0147 1.015 1.0250 1.025
4.0 1.0040 1.004 1.0051 1.005

1.04 0.9547 0.955 0.8058 0.806

2.0
1.2 0.9656 0.966 0.9031 0.903
2.0 0.9863 0.986 0.9767 0.977
4.0 0.9962 0.996 0.9951 0.995

It is of interest to compare these curves with dependences of the stress-intensity factors at the tip a of a
rectilinear segment of length R on the ratio d/R in the problem of two rectilinear cuts or inclusions normal to the
interface between the half-planes (see Fig. 2). The dependences of the factors K1(a) for the semicircumference and
segment are very close for all composite plates considered. For the half-plane, these dependences differ substantially
for d < 0.5R [in Fig. 5, the dashed curve corresponding to the dependence of the factor K1(a) at the tip of the
segment on the ratio d/R merges with curve 4 for large d/R]. In the case of rigid inclusions, the absolute values of
the factors K2(a) at the segment tip are smaller than 0.04 for d/R = 0.02–2.0.

Table 1 summarizes the calculated stress-intensity factors for the problem of an internal crack AB of length 2a
normal to the interface between two isotropic half-planes with different elastic properties, which are loaded along
the interface by the tensile stresses σ1 and σ2 = kσ1, k = E(2)/E(1) (ν1 = ν2 = 0.3). The results obtained by the
method proposed (20 interpolation points were used) are compared with the data of [8, Table 8.9] (B is the tip
nearest to the interface).

The calculated stress-intensity factors at the tips of a rigid inclusion that approaches normally the edge of
an isotropic half-plane coincide with those given in [9, Table 6] with an accuracy of 10−3. It is noteworthy that
there is a difference in determining these factors in the present work and in [9].

A comparison of the results obtained with the data available in the literature shows that the method proposed
for calculating the stress–strain state of composite plates with cuts and thin undeformable inclusions is very effective
and provides high accuracy.
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